Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Front Immunol ; 15: 1329092, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585272

RESUMEN

Background: There is a paucity of data on the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in feces of lactating women with coronavirus disease 2019 (COVID-19) and their breastfed infants as well as associations between fecal shedding and symptomatology. Objective: We examined whether and to what extent SARS-CoV-2 is detectable in the feces of lactating women and their breastfed infants following maternal COVID-19 diagnosis. Methods: This was a longitudinal study carried out from April 2020 to December 2021 involving 57 breastfeeding maternal-infant dyads: 33 dyads were enrolled within 7 d of maternal COVID-19 diagnosis, and 24 healthy dyads served as controls. Maternal/infant fecal samples were collected by participants, and surveys were administered via telephone over an 8-wk period. Feces were analyzed for SARS-CoV-2 RNA. Results: Signs/symptoms related to ears, eyes, nose, and throat (EENT); general fatigue/malaise; and cardiopulmonary signs/symptoms were commonly reported among mothers with COVID-19. In infants of mothers with COVID-19, EENT, immunologic, and cardiopulmonary signs/symptoms were most common, but prevalence did not differ from that of infants of control mothers. SARS-CoV-2 RNA was detected in feces of 7 (25%) women with COVID-19 and 10 (30%) of their infants. Duration of fecal shedding ranged from 1-4 wk for both mothers and infants. SARS-CoV-2 RNA was sparsely detected in feces of healthy dyads, with only one mother's and two infants' fecal samples testing positive. There was no relationship between frequencies of maternal and infant SARS-CoV-2 fecal shedding (P=0.36), although presence of maternal or infant fever was related to increased likelihood (7-9 times greater, P≤0.04) of fecal shedding in infants of mothers with COVID-19.


Asunto(s)
COVID-19 , Lactante , Humanos , Femenino , Masculino , COVID-19/diagnóstico , COVID-19/epidemiología , SARS-CoV-2 , Lactancia Materna , Prueba de COVID-19 , Lactancia , Estudios Longitudinales , ARN Viral , Prevalencia , Heces
2.
Adv Nutr ; 15(4): 100196, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432590

RESUMEN

Cannabis use has increased sharply in the last 20 y among adults, including reproductive-aged women. Its recent widespread legalization is associated with a decrease in risk perception of cannabis use during breastfeeding. However, the effect of cannabis use (if any) on milk production and milk composition is not known. This narrative review summarizes current knowledge related to maternal cannabis use during breastfeeding and provides an overview of possible pathways whereby cannabis might affect milk composition and production. Several studies have demonstrated that cannabinoids and their metabolites are detectable in human milk produced by mothers who use cannabis. Due to their physicochemical properties, cannabinoids are stored in adipose tissue, can easily reach the mammary gland, and can be secreted in milk. Moreover, cannabinoid receptors are present in adipocytes and mammary epithelial cells. The activation of these receptors directly modulates fatty acid metabolism, potentially causing changes in milk fatty acid profiles. Additionally, the endocannabinoid system is intimately connected to the endocrine system. As such, it is probable that interactions of exogenous cannabinoids with the endocannabinoid system might modify release of critical hormones (e.g., prolactin and dopamine) that regulate milk production and secretion. Nonetheless, few studies have investigated effects of cannabis use (including on milk production and composition) in lactating women. Additional research utilizing robust methodologies are needed to elucidate whether and how cannabis use affects human milk production and composition.


Asunto(s)
Cannabinoides , Cannabis , Adulto , Femenino , Humanos , Animales , Lactancia , Leche Humana/química , Lactancia Materna , Endocannabinoides/análisis , Endocannabinoides/metabolismo , Endocannabinoides/farmacología , Leche/química , Cannabinoides/farmacología , Cannabinoides/análisis , Cannabinoides/metabolismo , Ácidos Grasos/farmacología
3.
J Cannabis Res ; 6(1): 6, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365778

RESUMEN

OBJECTIVE: Our primary objective was to understand breastfeeding individuals' decisions to use cannabis. Specifically, we investigated reasons for cannabis use, experiences with healthcare providers regarding use, and potential concerns about cannabis use. METHODS: We collected survey data from twenty breastfeeding participants from Washington and Oregon who used cannabis at least once weekly. We documented individuals' cannabis use and analyzed factors associated with their decisions to use cannabis during lactation. Qualitative description was used to assess responses to an open-ended question about potential concerns. RESULTS: Fifty-five percent of participants (n = 11) reported using cannabis to treat or manage health conditions, mostly related to mental health. Eighty percent of participants (n = 16) reported very few or no concerns about using cannabis while breastfeeding, although participants who used cannabis for medical purposes had significantly more concerns. Most participants (n = 18, 90%) reported receiving either no or unhelpful advice from healthcare providers. Four themes arose through qualitative analysis, indicating that breastfeeding individuals are: 1) identifying research gaps and collecting evidence; 2) monitoring their child's health and development; 3) monitoring and titrating their cannabis use; and 4) comparing risks between cannabis and other controlled substances. CONCLUSIONS: Breastfeeding individuals reported cannabis for medical and non-medical reasons and few had concerns about cannabis use during breastfeeding. Breastfeeding individuals reported using a variety of strategies and resources in their assessment of risk or lack thereof when deciding to use cannabis. Most participants reported receiving no helpful guidance from healthcare providers.

4.
Trauma Violence Abuse ; : 15248380231206113, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37937723

RESUMEN

There is a dearth of evidence indicating the effectiveness of psychological interventions targeting depression and/or posttraumatic stress disorder (PTSD) for Black women in the United States (US) exposed to intimate partner violence (IPV). We searched PubMed, MEDLINE, PsycINFO, EBSCOhost, Social Sciences, Social Sciences Full Text, Social Work Abstracts, and Cochrane databases between September 2021 and October 2022, for original studies of randomized control trials (RCTs) reporting depression and/or PTSD interventions delivered to US Black women with histories of IPV. Of the 1,276 articles, 46 were eligible and 8 RCTs were ultimately included in the review; interventions for depression (four interventions, n = 1,518) and PTSD (four interventions, n = 477). Among Depression and PTSD interventions (one intervention, n = 208), Beck's Depression Inventory II indicated M = 35.2, SD = 12.6 versus M = 29.5, SD = 13.1, <.01, and Davidson Trauma Scale indicated M = 79.4, SD = 31.5 versus M = 72.1, SD = 33.5, <.01, at pre- and post-intervention respectively. Also, some interventions reported severity of depression M = 13.9 (SD = 5.4) versus M = 7.9 (SD = 5.7) < 0.01, and PTSD (M = 8.08 vs. M = 14.13, F(1,117) = 9.93, p < .01) at pre- and post-intervention respectively. Publication bias was moderate and varied between 12 and 17 via the Downs and Black Checklist for Methodological Rigor for RCTs. Psychological interventions targeting depression and/or PTSD for Black women with histories of IPV reflect moderate improvement. Interventions that account for cultural nuances specific to Black women are fundamental for improving outcomes for survivors presenting with depression and/or PTSD.

5.
PLoS One ; 18(8): e0287839, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37556398

RESUMEN

The human milk microbiome (HMM) is hypothesized to be seeded by multiple factors, including the infant oral microbiome during breastfeeding. However, it is not known whether breastfeeding patterns (e.g., frequency or total time) impact the composition of the HMM. As part of the Mother-Infant Microbiomes, Behavior, and Ecology Study (MIMBES), we analyzed data from naturalistic observations of 46 mother-infant dyads living in the US Pacific Northwest and analyzed milk produced by the mothers for its bacterial diversity and composition. DNA was extracted from milk and the V1-V3 region of the 16S rRNA gene was amplified and sequenced. We hypothesized that number of breastfeeding bouts (breastfeeding sessions separated by >30 seconds) and total time breastfeeding would be associated with HMM α-diversity (richness, diversity, or evenness) and differential abundance of HMM bacterial genera. Multiple linear regression was used to examine associations between HMM α-diversity and the number of breastfeeding bouts or total time breastfeeding and selected covariates (infant age, maternal work outside the home, frequency of allomother physical contact with the infant, non-household caregiving network). HMM richness was inversely associated with number of breastfeeding bouts and frequency of allomother physical contact, but not total time breastfeeding. Infants' non-household caregiving network was positively associated with HMM evenness. In two ANCOM-BC analyses, abundances of 5 of the 35 most abundant genera were differentially associated with frequency of breastfeeding bouts (Bifidobacterium, Micrococcus, Pedobacter, Acidocella, Achromobacter); 5 genera (Bifidobacterium, Agreia, Pedobacter, Rugamonas, Stenotrophomonas) were associated with total time breastfeeding. These results indicate that breastfeeding patterns and infant caregiving ecology may play a role in influencing HMM composition. Future research is needed to identify whether these relationships are consistent in other populations and if they are associated with variation in the infant's gastrointestinal (including oral) microbiome.


Asunto(s)
Microbiota , Leche Humana , Femenino , Humanos , Lactante , Leche Humana/microbiología , Lactancia Materna , Madres , ARN Ribosómico 16S/genética , Microbiota/genética , Bacterias/genética
6.
Am J Hum Biol ; 35(11): e23943, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37358306

RESUMEN

OBJECTIVES: Breastfeeding is an energetically costly and intense form of human parental investment, providing sole-source nutrition in early infancy and bioactive components, including immune factors. Given the energetic cost of lactation, milk factors may be subject to tradeoffs, and variation in concentrations have been explored utilizing the Trivers-Willard hypothesis. As human milk immune factors are critical to developing immune system and protect infants against pathogens, we tested whether concentrations of milk immune factors (IgA, IgM, IgG, EGF, TGFß2, and IL-10) vary in response to infant sex and maternal condition (proxied by maternal diet diversity [DD] and body mass index [BMI]) as posited in the Trivers-Willard hypothesis and consider the application of the hypothesis to milk composition. METHODS: We analyzed concentrations of immune factors in 358 milk samples collected from women residing in 10 international sites using linear mixed-effects models to test for an interaction between maternal condition, including population as a random effect and infant age and maternal age as fixed effects. RESULTS: IgG concentrations were significantly lower in milk produced by women consuming diets with low diversity with male infants than those with female infants. No other significant associations were identified. CONCLUSIONS: IgG concentrations were related to infant sex and maternal diet diversity, providing minimal support for the hypothesis. Given the lack of associations across other select immune factors, results suggest that the Trivers-Willard hypothesis may not be broadly applied to human milk immune factors as a measure of maternal investment, which are likely buffered against perturbations in maternal condition.


Asunto(s)
Leche Humana , Estado Nutricional , Femenino , Lactante , Masculino , Humanos , Lactancia/fisiología , Lactancia Materna , Factores Inmunológicos , Inmunoglobulina G
7.
Am J Clin Nutr ; 117 Suppl 1: S28-S42, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37173059

RESUMEN

Human milk is universally recognized as the preferred food for infants during the first 6 mo of life because it provides not only essential and conditionally essential nutrients in necessary amounts but also other biologically active components that are instrumental in protecting, communicating important information to support, and promoting optimal development and growth in infants. Despite decades of research, however, the multifaceted impacts of human milk consumption on infant health are far from understood on a biological or physiological basis. Reasons for this lack of comprehensive knowledge of human milk functions are numerous, including the fact that milk components tend to be studied in isolation, although there is reason to believe that they interact. In addition, milk composition can vary greatly within an individual as well as within and among populations. The objective of this working group within the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to provide an overview of human milk composition, factors impacting its variation, and how its components may function to coordinately nourish, protect, and communicate complex information to the recipient infant. Moreover, we discuss the ways whereby milk components might interact such that the benefits of an intact milk matrix are greater than the sum of its parts. We then apply several examples to illustrate how milk is better thought of as a biological system rather than a more simplistic "mixture" of independent components to synergistically support optimal infant health.


Asunto(s)
Lactancia Materna , Leche Humana , Femenino , Lactante , Humanos , Fenómenos Fisiológicos Nutricionales del Lactante
8.
J Proteome Res ; 22(7): 2199-2217, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37235544

RESUMEN

Generating top-down tandem mass spectra (MS/MS) from complex mixtures of proteoforms benefits from improvements in fractionation, separation, fragmentation, and mass analysis. The algorithms to match MS/MS to sequences have undergone a parallel evolution, with both spectral alignment and match-counting approaches producing high-quality proteoform-spectrum matches (PrSMs). This study assesses state-of-the-art algorithms for top-down identification (ProSight PD, TopPIC, MSPathFinderT, and pTop) in their yield of PrSMs while controlling false discovery rate. We evaluated deconvolution engines (ThermoFisher Xtract, Bruker AutoMSn, Matrix Science Mascot Distiller, TopFD, and FLASHDeconv) in both ThermoFisher Orbitrap-class and Bruker maXis Q-TOF data (PXD033208) to produce consistent precursor charges and mass determinations. Finally, we sought post-translational modifications (PTMs) in proteoforms from bovine milk (PXD031744) and human ovarian tissue. Contemporary identification workflows produce excellent PrSM yields, although approximately half of all identified proteoforms from these four pipelines were specific to only one workflow. Deconvolution algorithms disagree on precursor masses and charges, contributing to identification variability. Detection of PTMs is inconsistent among algorithms. In bovine milk, 18% of PrSMs produced by pTop and TopMG were singly phosphorylated, but this percentage fell to 1% for one algorithm. Applying multiple search engines produces more comprehensive assessments of experiments. Top-down algorithms would benefit from greater interoperability.


Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Humanos , Proteoma/genética , Proteómica , Programas Informáticos , Procesamiento Proteico-Postraduccional
9.
Front Microbiol ; 14: 1105675, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819069

RESUMEN

There is growing interest in a functional understanding of milk-associated microbiota as there is ample evidence that host-associated microbial communities play an active role in host health and phenotype. Mastitis, characterized by painful inflammation of the mammary gland, is prevalent among lactating humans and agricultural animals and is associated with significant clinical and economic consequences. The etiology of mastitis is complex and polymicrobial and correlative studies have indicated alterations in milk microbial community composition. Recent evidence is beginning to suggest that a causal relationship may exist between the milk microbiota and host phenotype in mastitis. Multi-omic approaches can be leveraged to gain a mechanistic, molecular level understanding of how the milk microbiome might modulate host physiology, thereby informing strategies to prevent and ameliorate mastitis. In this paper, we review existing studies that have utilized omics approaches to investigate the role of the milk microbiome in mastitis. We also summarize the strengths and challenges associated with the different omics techniques including metagenomics, metatranscriptomics, metaproteomics, metabolomics and lipidomics and provide perspective on the integration of multiple omics technologies for a better functional understanding of the milk microbiome.

10.
Nutrients ; 14(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36432395

RESUMEN

The sodium (Na) concentration and the ratio of Na to potassium (K; Na/K) in human milk are used commonly as biomarkers of subclinical mastitis, but limited data exist on their relationship to and ability to predict clinical mastitis. Here, we assessed concentrations of Na, K, Na/K, and somatic cell count (SCC), a mammary health biomarker used in the dairy industry, in milk prospectively collected from both breasts of 41 women over the first 6 weeks postpartum. Although values differed over time postpartum, there were no differences in mean values between breasts. Nearly one-quarter (24%) of participants experienced clinical mastitis. Somatic cell counts >4.76 × 105 cells/mL were most strongly related to development of clinical mastitis in the following week (odds ratio, 7.81; 95% CI, 2.15−28.30; p = 0.002), although relationships were also observed for SCC > 4.00 × 105 cells/mL and Na concentration >12 mmol/L. Estimates of the prevalence of subclinical mastitis in women who never progressed to clinical mastitis differed by biomarker but ranged from 20 to 75%. Despite these findings, positive predictive values (PPV) of the biomarkers for identifying clinical mastitis were low (≤0.34), indicating additional research is needed to identify single biomarkers or composite measures that are highly specific, sensitive, and predictive of clinical mastitis in women.


Asunto(s)
Mastitis , Leche Humana , Humanos , Femenino , Leche Humana/química , Potasio/análisis , Sodio/análisis , Mastitis/diagnóstico , Mastitis/epidemiología , Recuento de Células , Periodo Posparto , Iones , Biomarcadores
11.
Front Immunol ; 13: 1015002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304449

RESUMEN

Infants exposed to caregivers infected with SARS-CoV-2 may have heightened infection risks relative to older children due to their more intensive care and feeding needs. However, there has been limited research on COVID-19 outcomes in exposed infants beyond the neonatal period. Between June 2020 - March 2021, we conducted interviews and collected capillary dried blood spots from 46 SARS-CoV-2 infected mothers and their infants (aged 1-36 months) for up to two months following maternal infection onset (COVID+ group, 87% breastfeeding). Comparative data were also collected from 26 breastfeeding mothers with no known SARS-CoV-2 infection or exposures (breastfeeding control group), and 11 mothers who tested SARS-CoV-2 negative after experiencing symptoms or close contact exposure (COVID- group, 73% breastfeeding). Dried blood spots were assayed for anti-SARS-CoV-2 S-RBD IgG and IgA positivity and anti-SARS-CoV-2 S1 + S2 IgG concentrations. Within the COVID+ group, the mean probability of seropositivity among infant samples was lower than that of corresponding maternal samples (0.54 and 0.87, respectively, for IgG; 0.33 and 0.85, respectively, for IgA), with likelihood of infant infection positively associated with the number of maternal symptoms and other household infections reported. COVID+ mothers reported a lower incidence of COVID-19 symptoms among their infants as compared to themselves and other household adults, and infants had similar PCR positivity rates as other household children. No samples returned by COVID- mothers or their infants tested antibody positive. Among the breastfeeding control group, 44% of mothers but none of their infants tested antibody positive in at least one sample. Results support previous research demonstrating minimal risks to infants following maternal COVID-19 infection, including for breastfeeding infants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Lactante , Recién Nacido , Adulto , Femenino , Niño , Humanos , Adolescente , Anticuerpos Antivirales , Inmunoglobulina G , Inmunoglobulina A
12.
Am J Clin Nutr ; 114(6): 1960-1970, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34510180

RESUMEN

BACKGROUND: The human milk microbiome may contribute to the benefits of breastfeeding by providing bacteria to the infant gastrointestinal tract. Many women pump their milk, but the effect of pumping on the milk microbiome is unknown. OBJECTIVES: Our objective was to determine the effects of pumping supplies on the pumped human milk microbiome. METHODS: This was an in-home, randomized, crossover trial of 2 collection methods. Women (n = 52) pumped twice within 3.5 h, once with their own breast pumps and milk collection supplies (OWN SUPP) and once with a hospital-grade pump and sterile collection supplies (STER SUPP). Pumping order was randomized. The milk microbiome was characterized by aerobic culturing and 16S ribosomal RNA gene sequencing. RESULTS: Milk collected with OWN SUPP yielded more total aerobic and gram-negative bacteria than milk collected with STER SUPP, reflecting a 6.6 (adjusted OR; 95% CI: 1.7, 25; P = 0.006) higher odds of containing >104 total aerobic CFU/mL and 19 (adjusted OR; 95% CI: 4.1, 88; P < 0.0001) higher odds of yielding culturable gram-negative bacteria. Milk collected with OWN SUPP yielded more Proteobacterias , including higher relative abundances of Acinetobacter and Stenotrophomonas, compared to milk collected with STER SUPP. Results were consistent across pumping-order groups. CONCLUSIONS: We demonstrated that pumping supplies altered the milk microbiome. On average, milk collected with OWN SUPP resulted in elevated levels of culturable total and gram-negative bacteria and proteobacterial DNA compared to milk collected with STER SUPP. More research is needed to assess implications for infant health.


Asunto(s)
Microbiota , Leche Humana , Bacterias/genética , Lactancia Materna , Estudios Cruzados , Femenino , Humanos , Lactante , Leche Humana/microbiología , ARN Ribosómico 16S/genética
13.
Microorganisms ; 9(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072117

RESUMEN

Previously published data from our group and others demonstrate that human milk oligosaccharide (HMOs), as well as milk and infant fecal microbial profiles, vary by geography. However, little is known about the geographical variation of other milk-borne factors, such as lactose and protein, as well as the associations among these factors and microbial community structures in milk and infant feces. Here, we characterized and contrasted concentrations of milk-borne lactose, protein, and HMOs, and examined their associations with milk and infant fecal microbiomes in samples collected in 11 geographically diverse sites. Although geographical site was strongly associated with milk and infant fecal microbiomes, both sample types assorted into a smaller number of community state types based on shared microbial profiles. Similar to HMOs, concentrations of lactose and protein also varied by geography. Concentrations of HMOs, lactose, and protein were associated with differences in the microbial community structures of milk and infant feces and in the abundance of specific taxa. Taken together, these data suggest that the composition of human milk, even when produced by relatively healthy women, differs based on geographical boundaries and that concentrations of HMOs, lactose, and protein in milk are related to variation in milk and infant fecal microbial communities.

14.
Annu Rev Nutr ; 41: 283-308, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34115518

RESUMEN

Because breastfeeding provides optimal nutrition and other benefits for infants (e.g., lower risk of infectious disease) and benefits for mothers (e.g., less postpartum bleeding), many organizations recommend that healthy infants be exclusively breastfed for 4 to 6 months in the United States and 6 months internationally. Recommendations related to how long breastfeeding should continue, however, are inconsistent. The objective of this article is to review the literature related to evidence for benefits of breastfeeding beyond 1 year for mothers and infants. In summary, human milk represents a good source of nutrients and immune components beyond 1 year. Some studies point toward lower infant mortality in undernourished children breastfed for >1 year, and prolonged breastfeeding increases interbirth intervals. Data on other outcomes (e.g., growth, diarrhea, obesity, and maternal weight loss) are inconsistent, often lacking sufficient control for confounding variables. There is a substantial need for rigorous, prospective, mixed-methods, cross-cultural research on this topic.


Asunto(s)
Lactancia Materna , Estado Nutricional , Niño , Femenino , Humanos , Lactante , Obesidad , Estudios Prospectivos , Estados Unidos
15.
Front Cell Infect Microbiol ; 11: 622550, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842385

RESUMEN

Recent work has demonstrated the existence of large inter-individual and inter-population variability in the microbiota of human milk from healthy women living across variable geographical and socio-cultural settings. However, no studies have evaluated the impact that variable sequencing approaches targeting different 16S rRNA variable regions may have on the human milk microbiota profiling results. This hampers our ability to make meaningful comparisons across studies. In this context, the main purpose of the present study was to re-process and re-sequence the microbiome in a large set of human milk samples (n = 412) collected from healthy women living at diverse international sites (Spain, Sweden, Peru, United States, Ethiopia, Gambia, Ghana and Kenya), by targeting a different 16S rRNA variable region and reaching a larger sequencing depth. Despite some differences between the results obtained from both sequencing approaches were notable (especially regarding alpha and beta diversities and Proteobacteria representation), results indicate that both sequencing approaches revealed a relatively consistent microbiota configurations in the studied cohorts. Our data expand upon the milk microbiota results we previously reported from the INSPIRE cohort and provide, for the first time across globally diverse populations, evidence of the impact that different DNA processing and sequencing approaches have on the microbiota profiles obtained for human milk samples. Overall, our results corroborate some similarities regarding the microbial communities previously reported for the INSPIRE cohort, but some differences were also detected. Understanding the impact of different sequencing approaches on human milk microbiota profiles is essential to enable meaningful comparisons across studies. Clinical Trial Registration: www.clinicaltrials.gov, identifier NCT02670278.


Asunto(s)
Microbiota , Leche Humana , Bacterias/genética , Etiopía , Femenino , Gambia , Humanos , Kenia , Perú , ARN Ribosómico 16S/genética , España , Suecia
16.
Genomics ; 113(4): 1867-1875, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33831438

RESUMEN

Human milk oligosaccharides (HMO), the third most abundant component of human milk, are thought to be important contributors to infant health. Studies have provided evidence that geography, stage of lactation, and Lewis and secretor blood groups are associated with HMO profile. However, little is known about how variation across the genome may influence HMO composition among women in various populations. In this study, we performed genome-wide association analyses of 395 women from 8 countries to identify genetic regions associated with 19 different HMO. Our data support FUT2 as the most significantly associated (P < 4.23-9 to P < 4.5-70) gene with seven HMO and provide evidence of balancing selection for FUT2. Although polymorphisms in FUT3 were also associated with variation in lacto-N-fucopentaose II and difucosyllacto-N-tetrose, we found little evidence of selection on FUT3. To our knowledge, this is the first report of the use of genome-wide association analyses on HMO.


Asunto(s)
Estudio de Asociación del Genoma Completo , Leche Humana , Oligosacáridos , Femenino , Humanos , Lactancia , Leche Humana/química , Oligosacáridos/química
17.
mBio ; 12(1)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563823

RESUMEN

Whether mother-to-infant SARS-CoV-2 transmission can occur during breastfeeding and, if so, whether the benefits of breastfeeding outweigh this risk during maternal COVID-19 illness remain important questions. Using RT-qPCR, we did not detect SARS-CoV-2 RNA in any milk sample (n = 37) collected from 18 women following COVID-19 diagnosis. Although we detected evidence of viral RNA on 8 out of 70 breast skin swabs, only one was considered a conclusive positive result. In contrast, 76% of the milk samples collected from women with COVID-19 contained SARS-CoV-2-specific IgA, and 80% had SARS-CoV-2-specific IgG. In addition, 62% of the milk samples were able to neutralize SARS-CoV-2 infectivity in vitro, whereas milk samples collected prior to the COVID-19 pandemic were unable to do so. Taken together, our data do not support mother-to-infant transmission of SARS-CoV-2 via milk. Importantly, milk produced by infected mothers is a beneficial source of anti-SARS-CoV-2 IgA and IgG and neutralizes SARS-CoV-2 activity. These results support recommendations to continue breastfeeding during mild-to-moderate maternal COVID-19 illness.IMPORTANCE Results from prior studies assaying human milk for the presence of SARS-CoV-2, the causative virus of COVID-19, have suggested milk may act as a potential vehicle for mother-to-child transmission. Most previous studies are limited because they followed only a few participants, were cross-sectional, and/or failed to report how milk was collected and/or analyzed. As such, considerable uncertainty remains regarding whether human milk is capable of transmitting SARS-CoV-2 from mother to child. Here, we report that repeated milk samples collected from 18 women following COVID-19 diagnosis did not contain SARS-CoV-2 RNA; however, risk of transmission via breast skin should be further evaluated. Importantly, we found that milk produced by infected mothers is a source of anti-SARS-CoV-2 IgA and IgG and neutralizes SARS-CoV-2 activity. These results support recommendations to continue breastfeeding during mild-to-moderate maternal COVID-19 illness as milk likely provides specific immunologic benefits to infants.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , COVID-19/inmunología , Leche Humana/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , SARS-CoV-2/inmunología , Adulto , Mama/virología , Lactancia Materna , COVID-19/transmisión , COVID-19/virología , Femenino , Humanos , Lactante , Transmisión Vertical de Enfermedad Infecciosa , Masculino , Leche Humana/virología , Madres , Embarazo , Complicaciones Infecciosas del Embarazo/virología , ARN Viral/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación
18.
Front Immunol ; 12: 801797, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003130

RESUMEN

Background: Limited data are available regarding the balance of risks and benefits from human milk and/or breastfeeding during and following maternal infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objective: To investigate whether SARS-CoV-2 can be detected in milk and on the breast after maternal coronavirus disease 2019 (COVID-19) diagnosis; and characterize concentrations of milk immunoglobulin (Ig) A specific to the SARS-CoV-2 spike glycoprotein receptor binding domain (RBD) during the 2 months after onset of symptoms or positive diagnostic test. Methods: Using a longitudinal study design, we collected milk and breast skin swabs one to seven times from 64 lactating women with COVID-19 over a 2-month period, beginning as early as the week of diagnosis. Milk and breast swabs were analyzed for SARS-CoV-2 RNA, and milk was tested for anti-RBD IgA. Results: SARS-CoV-2 was not detected in any milk sample or on 71% of breast swabs. Twenty-seven out of 29 (93%) breast swabs collected after breast washing tested negative for SARS-CoV-2. Detection of SARS-CoV-2 on the breast was associated with maternal coughing and other household COVID-19. Most (75%; 95% CI, 70-79%; n=316) milk samples contained anti-RBD IgA, and concentrations increased (P=.02) during the first two weeks following onset of COVID-19 symptoms or positive test. Milk-borne anti-RBD IgA persisted for at least two months in 77% of women. Conclusion: Milk produced by women with COVID-19 does not contain SARS-CoV-2 and is likely a lasting source of passive immunity via anti-RBD IgA. These results support recommendations encouraging lactating women to continue breastfeeding during and after COVID-19 illness.


Asunto(s)
Anticuerpos Antivirales/análisis , Inmunoglobulina A/análisis , Leche Humana/inmunología , SARS-CoV-2/inmunología , Adulto , Anticuerpos Antivirales/inmunología , Lactancia Materna , COVID-19/inmunología , Femenino , Humanos , Inmunización Pasiva , Inmunoglobulina A/inmunología , Lactancia , Estudios Longitudinales , Leche Humana/virología , ARN Viral/genética
19.
Vaccines (Basel) ; 9(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374191

RESUMEN

Staphylococcus aureus (S. aureus) is a primary agent of bovine mastitis and a source of significant economic loss for the dairy industry. We previously reported antigen-specific immune induction in the milk and serum of dairy cows following vaccination with a cholera toxin A2 and B subunit (CTA2/B) based vaccine containing the iron-regulated surface determinant A (IsdA) and clumping factor A (ClfA) antigens of S. aureus (IsdA + ClfA-CTA2/B). The goal of the current study was to assess the efficacy of this vaccine to protect against S. aureus infection after intramammary challenge. Six mid-lactation heifers were randomized to vaccinated and control groups. On days 1 and 14 animals were inoculated intranasally with vaccine or vehicle control, and on day 20 animals were challenged with S. aureus. Clinical outcome, milk quality, bacterial shedding, and somatic cell count (SCC) were followed for ten days post-challenge. Vaccinated animals did not show signs of clinical S. aureus mastitis and had lower SCCs compared to control animals during the challenge period. Reductions in bacterial shedding were observed but were not significant between groups. Antibody analysis of milk and serum indicated that, upon challenge, vaccinated animals produced enhanced IsdA- and ClfA-CTA2/B specific immunoglobulin G (IgG) responses, while responses to CTA2/B alone were not different between groups. Responses after challenge were largely IgG1 against the IsdA antigen and mixed IgG1/IgG2 against the ClfA antigen. In addition, there was a significant increase in interferon gamma (IFN-γ) expression from blood cells in vaccinated animals on day 20. While preliminary, these findings support evidence of the induction of active immunity by IsdA + ClfA-CTA2/B, and further assessment of this vaccine is warranted.

20.
medRxiv ; 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32995804

RESUMEN

Background: It is not known whether SARS-CoV-2 can be transmitted from mother to infant during breastfeeding, and if so whether the benefits of breastfeeding outweigh this risk. This study was designed to evaluate 1) if SARS-CoV-2 RNA can be detected in milk and on the breast of infected women, 2) concentrations of milk-borne anti-SARS-CoV-2 antibodies, and 3) the capacity of milk to neutralize SARS-CoV-2 infectivity. Methods: We collected 37 milk samples and 70 breast swabs (before and after breast washing) from 18 women recently diagnosed with COVID-19. Samples were analyzed for SARS-CoV-2 RNA using RT-qPCR. Milk was also analyzed for IgA and IgG specific for the nucleocapsid protein, receptor binding domain (RBD), S2 subunit of the spike protein of SARS-CoV-2, as well as 2 seasonal coronaviruses using ELISA; and for its ability to neutralize SARS-CoV-2. Results: We did not detect SARS-CoV-2 RNA in any milk sample. In contrast, SARS-CoV-2 RNA was detected on several breast swabs, although only one was considered conclusive. All milk contained SARS-CoV-2-specific IgA and IgG, and levels of anti-RBD IgA correlated with SARS-CoV-2 neutralization. Strong correlations between levels of IgA and IgG to SARS-CoV-2 and seasonal coronaviruses were noted. Conclusions: Our data do not support maternal-to-child transmission of SARS-CoV-2 via milk; however, risk of transmission via breast skin should be further evaluated. Importantly, milk produced by infected mothers is a source of anti-SARS-CoV-2 IgA and IgG and neutralizes SARS-CoV-2 activity. These results support recommendations to continue breastfeeding during mild-to-moderate maternal COVID-19 illness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...